De Rham cohomology of logarithmic forms on arrangements of hyperplanes

نویسنده

  • Jonathan Wiens
چکیده

The paper is devoted to computation of the cohomology of the complex of logarithmic differential forms with coefficients in rational functions whose poles are located on the union of several hyperplanes of a linear space over a field of characteristic zero. The main result asserts that for a vast class of hyperplane arrangements, including all free and generic arrangements, the cohomology algebra coincides with the Orlik-Solomon algebra. Over the field of complex numbers, this means that the cohomologies coincide with the cohomologies of the complement of the union of the hyperplanes. We also prove that the cohomologies do not change if poles of arbitrary multiplicity are allowed on some of the hyperplanes. In particular, this gives an analogue of the algebraic de Rham theorem for an arbitrary arrangement over an arbitrary field of zero characteristic.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Local Cohomology of Logarithmic Forms

Let Y be a divisor on a smooth algebraic variety X. We investigate the geometry of the Jacobian scheme of Y , homological invariants derived from logarithmic differential forms along Y , and their relationship with the property that Y be a free divisor. We consider arrangements of hyperplanes as a source of examples and counterexamples. In particular, we make a complete calculation of the local...

متن کامل

LOGARITHMIC DIFFERENTIAL FORMS ON p-ADIC SYMMETRIC SPACES

We give an explicit description in terms of logarithmic differential forms of the isomorphism of P. Schneider and U. Stuhler relating de Rham cohomology of p-adic symmetric spaces to boundary distributions. As an application we prove a Hodgetype decomposition for the de Rham cohomology of varieties over p-adic fields which admit a uniformization by a p-adic symmetric space.

متن کامل

A comparison of logarithmic overconvergent de Rham-Witt and log-crystalline cohomology for projective smooth varieties with normal crossing divisor

In this note we derive for a smooth projective variety X with normal crossing divisor Z an integral comparison between the log-crystalline cohomology of the associated log-scheme and the logarithmic overconvergent de Rham-Witt cohomology defined by Matsuue. This extends our previous result that in the absence of a divisor Z the crystalline cohomology and overconvergent de Rham-Witt cohomology a...

متن کامل

Bernstein-sato Polynomial versus Cohomology of the Milnor Fiber for Generic Hyperplane Arrangements

Let Q ∈ C[x1, . . . , xn] be a homogeneous polynomial of degree k > 0. We establish a connection between the Bernstein-Sato polynomial bQ(s) and the degrees of the generators for the top cohomology of the associated Milnor fiber. In particular, the integer uQ = max{i ∈ Z : bQ(−(i+n)/k) = 0} bounds the top degree (as differential form) of the elements in H DR (Q(1), C). The link is provided by t...

متن کامل

The van Est spectral sequence for Hopf algebras

Various aspects of the de Rham cohomology of Hopf algebras are discussed. In particular, it is shown that the de Rham cohomology of an algebra with the differentiable coaction of a cosemisimple Hopf algebra with trivial 0-th cohomology group, reduces to the de Rham cohomology of (co)invariant forms. Spectral sequences are discussed and the van Est spectral sequence for Hopf algebras is introduc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996